traverse_aabbtree
traverse_aabbtree(C, W, CH, tri_indices, split_dim, traversal_bool_fun, add_to_queue=None)
Axis-Aligned Bounding-Box hierarchy traversal.
Simple function which traverses an AABB tree given rejection and queue addition strategies.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
C |
(c,dim) numpy double array
|
Matrix of cell centers |
required |
W |
(c,dim) numpy double array
|
Matrix of half cell widths |
required |
CH |
(c,2) numpy int array
|
Matrix of child indices (-1 if leaf node) |
required |
tri_indices |
numpy int array
|
Vector of element indices (-1 if not leaf node) |
required |
split_dim |
numpy int array
|
Vector of split dimensions (0,1,2 for x,y,z) |
required |
traversal_bool_fun |
func
|
Function which takes (box_index,C,W,CH,split_dir,is_leaf) as input and returns whether to continue traversing to the next depth (True) or reject branch entirely (False) |
required |
add_to_queue |
func, optional (default None)
|
Function which takes (queue,box_index) as input and adds box_index to the queue (to support different search strategies). By default, appends to the end (breadth first). |
None
|
Returns:
Name | Type | Description |
---|---|---|
success |
bool
|
True if function finishes running without errors. |
See Also
initialize_aabbtree.
Examples:
# This is a sample class that defines the functions needed to do a depth-first closest point traversal
class test_closest_point_traversal:
def __init__(self,P,ptest):
self.P = P
self.ptest = ptest
self.current_best_guess = np.Inf
self.current_best_element = -1
self.others = []
# Auxiliary function which finds the distance of point to rectangle
def rectangle_sdf(self,pt,center,width):
shift_pt = np.abs(pt - center)
pt_dist = shift_pt - width/2
out = 0
out = out + np.max(pt_dist) * (np.max(pt_dist) <= 0)
out = out + pt_dist[1] * np.logical_and(pt_dist[0] <= 0, pt_dist[1] > 0)
out = out + pt_dist[0] * np.logical_and(pt_dist[1] <= 0, pt_dist[0] > 0)
out = out + np.sqrt(np.sum(pt_dist**2)) * (np.min(pt_dist) > 0)
return out
def traversal_function(self,q,C,W,CH,is_leaf):
center = C[q,:]
width = W[q,:]
# Distance is L1 norm of ptest minus center
sdf = self.rectangle_sdf(self.ptest,center,width)
# print(sdf)
if sdf<self.current_best_guess:
if is_leaf:
self.current_best_guess = sdf
self.current_best_box = q
# print(self.current_best_guess)
# print(self.current_best_box)
# print(C[self.current_best_box,:])
# print(W[self.current_best_box,:])
else:
self.others.append(q)
return True
def add_to_queue(self,queue,new_ind):
# Depth first: insert at beginning.
queue.insert(0,new_ind)
# This class allows us to define functions for our tree traversal.
# First, build tree:
P = np.random.rand(11,2)
C,W,CH,PAR,D,tri_ind = gpytoolbox.initialize_aabbtree(P)
# Next choose query point
ptest = P[9,:] + 1e-5
# Initialize traversal class
t = test_closest_point_traversal(P,ptest)
traverse_fun = t.traversal_function
add_to_queue_fun = t.add_to_queue
# Call to traversal function
_ = gpytoolbox.traverse_aabbtree(C,W,CH,traverse_fun,add_to_queue=add_to_queue_fun)
i = t.current_best_box
# tri_ind[i] should be 9 by construction
Source code in src/gpytoolbox/traverse_aabbtree.py
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 |
|