min_quad_with_fixed
min_quad_with_fixed_precompute
Source code in src/gpytoolbox/min_quad_with_fixed.py
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 |
|
__init__(Q, A=None, k=None)
Prepare a precomputation object to efficiently solve the following constrained optimization problem:
argmin_u 0.5 * tr(u.transpose()*Q*u) + tr(c.transpose()*u)
A*u == b
u[k] == y (if y is a 1-tensor) or u[k,:] == y) (if y is a 2-tensor)
Parameters:
Name | Type | Description | Default |
---|---|---|---|
Q |
(n,n) symmetric sparse scipy csr_matrix
|
This matrix will be symmetrized if not exactly symmetric. |
required |
A |
None or (m,n) sparse scipy csr_matrix
|
m=0 assumed if None |
None
|
k |
None or (o,) numpy array
|
o=0 assumed if None |
None
|
Returns:
Name | Type | Description |
---|---|---|
precomputed |
instance of class min_quad_with_fixed_precompute
|
precomputation object that can be used to solve the optimization problem |
Examples:
Example with simple degree-of-freedom constraints:
>>> import gpytoolbox as gpy
>>> import numpy as np
>>> import scipy as sp
>>>
>>> Q = sp.sparse.csc_matrix(np.array([[1.,0.,-2.],[0.,3.,0.],[-2.,0.,1.]]))
>>> k = np.array([2])
>>> precomp = gpy.min_quad_with_fixed_precompute(Q, k=k)
>>>
>>> c = np.array([0.,0.,1.])
>>> y = np.array([5.])
>>> u = precomp.solve(c=c, y=y)
>>> u
array([10., -0., 5.])
>>>
>>> # The constraints hold:
>>> u[k]-y
array([0.])
Example with linear equality conditions:
>>> import gpytoolbox as gpy
>>> import numpy as np
>>> import scipy as sp
>>>
>>> Q = sp.sparse.csc_matrix(np.array([[1.,0.,-2.],[0.,3.,0.],[-2.,0.,1.]]))
>>> A = sp.sparse.csc_matrix(np.array([[1.,0.,-1]]))
>>> precomp = gpy.min_quad_with_fixed_precompute(Q, A=A)
>>>
>>> c = np.array([0.,0.,1.])
>>> b = np.array([3.])
>>> u = precomp.solve(c=c, b=b)
>>> u
array([ 2., -0., -1.])
>>>
>>> # The constraints hold:
>>> A*u-b
array([0.])
Source code in src/gpytoolbox/min_quad_with_fixed.py
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 |
|
solve(c=None, b=None, y=None)
Solve the following quadratic program with linear constraints:
argmin_u 0.5 * tr(u.transpose()*Q*u) + tr(c.transpose()*u)
A*u == b
u[k] == y (if y is a 1-tensor) or u[k,:] == y) (if y is a 2-tensor)
Parameters:
Name | Type | Description | Default |
---|---|---|---|
c |
None or scalar or (n,) numpy array or (n,p) numpy array
|
Assumed to be scalar 0 if None |
None
|
b |
None or scalar or (m,) numpy array or (m,p) numpy array
|
Assumed to be scalar 0 if None |
None
|
y |
None or scalar or (o,) numpy array or (o,p) numpy array
|
Assumed to be scalar 0 if None |
None
|
Returns:
Name | Type | Description |
---|---|---|
u |
(n,) numpy array or (n,p) numpy array
|
Solution to the optimization problem |
Examples:
Example with simple degree-of-freedom constraints:
>>> import gpytoolbox as gpy
>>> import numpy as np
>>> import scipy as sp
>>>
>>> Q = sp.sparse.csc_matrix(np.array([[1.,0.,-2.],[0.,3.,0.],[-2.,0.,1.]]))
>>> k = np.array([2])
>>> precomp = gpy.min_quad_with_fixed_precompute(Q, k=k)
>>>
>>> c = np.array([0.,0.,1.])
>>> y = np.array([5.])
>>> u = precomp.solve(c=c, y=y)
>>> u
array([10., -0., 5.])
>>>
>>> # The constraints hold:
>>> u[k]-y
array([0.])
Example with linear equality conditions:
>>> import gpytoolbox as gpy
>>> import numpy as np
>>> import scipy as sp
>>>
>>> Q = sp.sparse.csc_matrix(np.array([[1.,0.,-2.],[0.,3.,0.],[-2.,0.,1.]]))
>>> A = sp.sparse.csc_matrix(np.array([[1.,0.,-1]]))
>>> precomp = gpy.min_quad_with_fixed_precompute(Q, A=A)
>>>
>>> c = np.array([0.,0.,1.])
>>> b = np.array([3.])
>>> u = precomp.solve(c=c, b=b)
>>> u
array([ 2., -0., -1.])
>>>
>>> # The constraints hold:
>>> A*u-b
array([0.])
Source code in src/gpytoolbox/min_quad_with_fixed.py
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 |
|
min_quad_with_fixed(Q, c=None, A=None, b=None, k=None, y=None)
Solve the following quadratic program with linear constraints:
argmin_u 0.5 * tr(u.transpose()*Q*u) + tr(c.transpose()*u)
A*u == b
u[k] == y (if y is a 1-tensor) or u[k,:] == y) (if y is a 2-tensor)
Parameters:
Name | Type | Description | Default |
---|---|---|---|
Q |
(n,n) symmetric sparse scipy csr_matrix
|
This matrix will be symmetrized if not exactly symmetric. |
required |
c |
None or scalar or (n,) numpy array or (n,p) numpy array
|
Assumed to be scalar 0 if None |
None
|
A |
None or (m,n) sparse scipy csr_matrix
|
m=0 assumed if None |
None
|
b |
None or scalar or (m,) numpy array or (m,p) numpy array
|
Assumed to be scalar 0 if None |
None
|
k |
None or (o,) numpy array
|
o=0 assumed if None |
None
|
y |
None or scalar or (o,) numpy array or (o,p) numpy array
|
Assumed to be scalar 0 if None |
None
|
Returns:
Name | Type | Description |
---|---|---|
u |
(n,) numpy array or (n,p) numpy array
|
Solution to the optimization problem |
See Also
fixed_dof_solve
for solving a (non-symmetric) linear system while
restricting certain degrees of freedom.
Examples:
Example with simple degree-of-freedom constraints:
>>> import gpytoolbox as gpy
>>> import numpy as np
>>> import scipy as sp
>>>
>>> Q = sp.sparse.csc_matrix(np.array([[1.,0.,-2.],[0.,3.,0.],[-2.,0.,1.]]))
>>> c = np.array([0.,0.,1.])
>>> k = np.array([2])
>>> y = np.array([5.])
>>> u = gpy.min_quad_with_fixed(Q, c=c, k=k, y=y)
>>> u
array([10., -0., 5.])
>>>
>>> # The constraints hold:
>>> u[k]-y
array([0.])
Example with linear equality conditions:
>>> import gpytoolbox as gpy
>>> import numpy as np
>>> import scipy as sp
>>>
>>> Q = sp.sparse.csc_matrix(np.array([[1.,0.,-2.],[0.,3.,0.],[-2.,0.,1.]]))
>>> c = np.array([0.,0.,1.])
>>> A = sp.sparse.csc_matrix(np.array([[1.,0.,-1]]))
>>> b = np.array([3.])
>>> u = gpy.min_quad_with_fixed(Q, c=c, A=A, b=b)
>>> u
array([ 2., -0., -1.])
>>>
>>> # The constraints hold:>>> A*u-b
array([0.])
Source code in src/gpytoolbox/min_quad_with_fixed.py
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 |
|