signed_distance
signed_distance(Q, V, F=None, use_cpp=True)
Signed distances from a set of points in space.
General-purpose function which computes the squared distance from a set of points to a mesh (in 3D) or polyline (in 2D). In 3D, this uses an AABB tree for efficient computation.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
Q |
(p,dim) numpy double array
|
Matrix of query point positions |
required |
V |
(v,dim) numpy double array
|
Matrix of mesh/polyline/pointcloud coordinates |
required |
F |
(f,s) numpy int array (optional, default None)
|
Matrix of mesh/polyline/pointcloud indices into V. If None, input is assumed to be an ordered closed polyline in 2D. |
None
|
use_cpp |
bool, optional (default False)
|
If True, uses a C++ implementation to compute the squared distances. This is much faster but requires compilation of the C++ code. |
True
|
Returns:
Name | Type | Description |
---|---|---|
signed_distances |
(p,) numpy double array
|
Vector of minimum signed distances |
indices |
(p,) numpy int array
|
Indices into F (or V, if F is None) of closest elements to each query point |
lmbs |
(p,s) numpy double array
|
Barycentric coordinates into the closest element of each closest mesh point to each query point |
See Also
squared_distance, winding_number
Examples:
v,f = gpytoolbox.read_mesh("bunny.obj") # Read a mesh
v = gpytoolbox.normalize_points(v) # Normalize mesh
# Generate query points
P = 2*np.random.rand(num_samples,3)-4
# Compute distances
signed_distance,ind,b = gpytoolbox.squared_distance(P,v,F=f,use_aabb=True)
Source code in src/gpytoolbox/signed_distance.py
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 |
|