marching_squares
marching_squares(S, GV, nx, ny)
Marching squares algorithm for extracting isocontours from a scalar field. Output is given as a list of (unordered) vertices and edge indices into the vertex list.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
S |
(nx
|
Scalar field |
required |
GV |
(nx
|
Grid vertex positions |
required |
nx |
int
|
Number of grid vertices in x direction |
required |
ny |
int
|
Number of grid vertices in y direction |
required |
Returns:
Name | Type | Description |
---|---|---|
V |
(nv,2) numpy double array
|
Vertex positions |
E |
(ne,2) numpy int array
|
Edge indices into V |
See Also
marching_cubes
Examples:
import numpy as np
import matplotlib.pyplot as plt
import gpytoolbox as gpt
# Create a scalar field
nx = 100
ny = 100
x = np.linspace(-1,1,nx)
y = np.linspace(-1,1,ny)
X,Y = np.meshgrid(x,y)
S = np.exp(-X**2-Y**2)
# Extract isocontours
V,E = gpt.marching_squares(S,np.c_[X.flatten(),Y.flatten()],nx,ny)
# Plot
plt.figure()
plt.imshow(S.reshape((nx,ny),order='F'),extent=[-1,1,-1,1])
for i in range(E.shape[0]):
plt.plot([V[E[i,0],0],V[E[i,1],0]],
[V[E[i,0],1],V[E[i,1],1]],
'k-')
plt.show()
plt.axis('equal')
plt.show()
Source code in src/gpytoolbox/marching_squares.py
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 |
|