linear_elasticity_stiffness
linear_elasticity_stiffness(V, F, K=1.75, mu=0.0115, volumes=None, mass=None)
  Differential operators needed for linear elasticity calculations
Returns the linear elastic stiffness and strain matrices for a given shape and material parameters
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
| V | numpy double array | Matrix of vertex coordinates | required | 
| F | numpy int array | Matrix of triangle indices | required | 
| K | double (optional, default 1.75) | Bulk modulus | 1.75 | 
| mu | double (optional, default 0.0115) | Material shear modulus | 0.0115 | 
| volumes | numpy double array (optional, default None) | Vector with the volumes (in 2D) or areas (in 3D) of each mesh element (if None, will be computed) | None | 
| mass | scipy sparse_csr (optional, default None) | The mesh's sparse mass matrix (if None, will be computed) | None | 
Returns:
| Name | Type | Description | 
|---|---|---|
| K | scipy sparse.csr_matrix  | Stiffness matrix | 
| C | scipy sparse.csr_matrix  | Constituitive model matrix | 
| strain | scipy sparse.csr_matrix  | Strain matrix | 
| A | scipy csr_matrix  | Diagonal element area matrix | 
| M | scipy sparse.csr_matrix  | Mass matrix (if input mass is not None, this returns the input) | 
See Also
linear_elasticity.
Notes
This implementation only works for 2D triangle meshes. Tetrahedral meshes will be supported soon.
Examples:
from gpytoolbox import regular_square_mesh, linear_elasticity_stiffness
V, F = regular_square_mesh(3) # Make regular mesh
V = (V + 1.)/2. # Normalize mesh
# Compute linear elasticity operators
K, C, strain, A, M = linear_elasticity_stiffness(V,F)
Source code in src/gpytoolbox/linear_elasticity_stiffness.py
        | 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 |  |