Skip to content

linear_elasticity

linear_elasticity(V, F, U0, dt=0.1, bb=None, bc=None, Ud0=None, fext=None, K=1.75, mu=0.0115, volumes=None, mass=None)

Linear elastic deformation

Compute the deformation of a 2D solid object according to the usual linear elasticity model.

Parameters:

Name Type Description Default
V numpy double array

Matrix of vertex coordinates

required
F numpy int array

Matrix of triangle indices

required
U0 numpy double array

Matrix of previous displacements

required
dt double (optional, default 0.1)

Timestep

0.1
bb numpy int array (optional, default None)

Fixed vertex indices into V

None
bc numpy double array (optional, default None)

Fixed vertex displacements

None
fext numpy double array (optional, default None)

Matrix of external forces (for example, gravity or a load)

None
Ud0 numpy double array (optional, default None)

Matrix of previous velocity

None
K double (optional, default 1.75)

Bulk modulus

1.75
mu double (optional, default 0.0115)

Material shear modulus

0.0115
volumes numpy double array (optional, default None)

Vector with the volumes (in 3D) or areas (in 2D) of each mesh element (if None, will be computed)

None
mass scipy sparse_csr (optional, default None)

The mesh's sparse mass matrix (if None, will be computed)

None

Returns:

Name Type Description
U numpy double array

Matrix of new displacements

sigma_v numpy double array

Vector of per-element Von Mises stresses

See Also

linear_elasticity_stiffness.

Notes

This implementation only works for 2D triangle meshes. Tetrahedral meshes will be supported soon.

Examples:

TO-DO

Source code in src/gpytoolbox/linear_elasticity.py
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
def linear_elasticity(V,F,U0,dt=0.1,bb=None,bc = None
    ,Ud0=None,fext=None,K=1.75,mu=0.0115,volumes=None,mass=None):
    """Linear elastic deformation

    Compute the deformation of a 2D solid object according to the usual linear elasticity model.

    Parameters
    ----------
    V : numpy double array
        Matrix of vertex coordinates
    F : numpy int array
        Matrix of triangle indices
    U0 : numpy double array 
        Matrix of previous displacements
    dt : double (optional, default 0.1) 
        Timestep
    bb : numpy int array (optional, default None)
        Fixed vertex indices into V
    bc : numpy double array (optional, default None)
        Fixed vertex *displacements*
    fext : numpy double array (optional, default None)
        Matrix of external forces (for example, gravity or a load)
    Ud0 : numpy double array (optional, default None)
        Matrix of previous velocity
    K : double (optional, default 1.75)
        Bulk modulus
    mu : double (optional, default 0.0115)
        Material shear modulus
    volumes : numpy double array (optional, default None)
        Vector with the volumes (in 3D) or areas (in 2D) of each mesh element (if None, will be computed)
    mass : scipy sparse_csr (optional, default None)
        The mesh's sparse mass matrix (if None, will be computed)

    Returns
    -------
    U : numpy double array
        Matrix of new displacements
    sigma_v : numpy double array
        Vector of per-element Von Mises stresses

    See Also
    --------
    linear_elasticity_stiffness.

    Notes
    -----
    This implementation only works for 2D triangle meshes. Tetrahedral meshes will be supported soon.

    Examples
    --------
    TO-DO
    """

    if (Ud0 is None):
        Ud0 = 0*V
    if (fext is None):
        fext = 0*V
    if (bb is not None):
        # This is the bit that assumes 2D
        bb = np.concatenate((bb,bb+V.shape[0]))
        bc = np.concatenate((bc[:,0],bc[:,1]))

    K, C, strain, A, M = linear_elasticity_stiffness(V,F,K=K,volumes=volumes,mass=mass,mu=mu)


    A = M + (dt**2)*K
    B = M*((dt**2)*np.reshape(fext,(-1, 1),order='F') + np.reshape(U0,(-1, 1),order='F') + dt*np.reshape(Ud0,(-1, 1),order='F'))

    U = min_quad_with_fixed(A,c=-1.0*np.squeeze(B),k=bb,y=bc)
    #print(U)
    # https://en.m.wikipedia.org/wiki/Von_Mises_yield_criterion
    face_stress_vec = C*strain*U
    if V.shape[1]==2:
        sigma_11 = face_stress_vec[0:F.shape[0]]
        sigma_22 = face_stress_vec[F.shape[0]:(2*F.shape[0])]
        sigma_12 = face_stress_vec[(2*F.shape[0]):(3*F.shape[0])]
        sigma_v = np.sqrt(0.5*(sigma_11*sigma_11 - sigma_11*sigma_22 + sigma_22*sigma_22 + 3*sigma_12*sigma_12))
    elif V.shape[1]==3:
        print("TET MESHES UNSUPPORTED")
    return U, sigma_v