Skip to content

squared_distance

squared_distance(P, V, F=None, use_aabb=False)

Squared distances from a set of points in space.

General-purpose function which computes the squared distance from a set of points to a mesh, point cloud or polyline, in two or three dimensions. Optionally, uses an aabb tree for efficient computation.

Parameters:

Name Type Description Default
P (p,dim) numpy double array

Matrix of query point positions

required
V (v,dim) numpy double array

Matrix of mesh/polyline/pointcloud coordinates

required
F (f,s) numpy int array (optional, default None)

Matrix of mesh/polyline/pointcloud indices into V. If None, input is assumed to be point cloud.

None
use_aabb bool, optional (default False)

Whether to use an AABB tree for logarithmic computation

False

Returns:

Name Type Description
squared_distances (p,) numpy double array

Vector of minimum squared distances

indices (p,) numpy int array

Indices into F (or V, if F is None) of closest elements to each query point

lmbs (p,s) numpy double array

Barycentric coordinates into the closest element of each closest mesh point to each query point

See Also

squared_distance_to_element, initialize_aabb.

Examples:

v,f = gpytoolbox.read_mesh("bunny.obj") # Read a mesh
v = gpytoolbox.normalize_points(v) # Normalize mesh
# Generate query points
P = 2*np.random.rand(num_samples,3)-4
# Compute distances
sqrD_gt,ind = gpytoolbox.squared_distance(P,v,F=f,use_aabb=True)
Source code in src/gpytoolbox/squared_distance.py
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
def squared_distance(P,V,F=None,use_aabb=False):
    """Squared distances from a set of points in space.

    General-purpose function which computes the squared distance from a set of points to a mesh, point cloud or polyline, in two or three dimensions. Optionally, uses an aabb tree for efficient computation.

    Parameters
    ----------
    P : (p,dim) numpy double array
        Matrix of query point positions
    V : (v,dim) numpy double array
        Matrix of mesh/polyline/pointcloud coordinates
    F : (f,s) numpy int array (optional, default None)
        Matrix of mesh/polyline/pointcloud indices into V. If None, input is assumed to be point cloud.
    use_aabb : bool, optional (default False)
        Whether to use an AABB tree for logarithmic computation 

    Returns
    -------
    squared_distances : (p,) numpy double array
        Vector of minimum squared distances
    indices : (p,) numpy int array
        Indices into F (or V, if F is None) of closest elements to each query point
    lmbs : (p,s) numpy double array
        Barycentric coordinates into the closest element of each closest mesh point to each query point

    See Also
    --------
    squared_distance_to_element, initialize_aabb.

    Examples
    --------
    ```python
    v,f = gpytoolbox.read_mesh("bunny.obj") # Read a mesh
    v = gpytoolbox.normalize_points(v) # Normalize mesh
    # Generate query points
    P = 2*np.random.rand(num_samples,3)-4
    # Compute distances
    sqrD_gt,ind = gpytoolbox.squared_distance(P,v,F=f,use_aabb=True)
    ```
    """
    if (F is None):
        F = np.linspace(0,V.shape[0]-1,V.shape[0],dtype=int)[:,None]

    dim = V.shape[1]
    P = np.reshape(P,(-1,dim),order='F')
    squared_distances = -np.ones(P.shape[0])
    indices = -np.ones(P.shape[0],dtype=int)
    lmbs = np.zeros((P.shape[0],F.shape[1]))
    if use_aabb:
        # Build tree once
        C,W,CH,PAR,D,tri_ind = initialize_aabbtree(V,F=F)
        for j in range(P.shape[0]):
            t = closest_point_traversal(V,F,P[j,:])
            traverse_fun = t.traversal_function
            add_to_queue_fun = t.add_to_queue
            # print(C)
            # print(W)
            # print(CH)
            # print(tri_ind)
            _ = traverse_aabbtree(C,W,CH,tri_ind,traverse_fun,add_to_queue=add_to_queue_fun)
            indices[j] = t.current_best_element
            squared_distances[j] = t.current_best_guess
            lmbs[j,:] = t.current_best_lmb
    else:
        # Loop over every element
        for j in range(P.shape[0]):
            min_sqrd_dist = np.Inf
            ind = -1
            best_lmb = []
            for i in range(F.shape[0]):
                this_sqrd_dist,lmb = squared_distance_to_element(P[j,:],V,F[i,:])
                if this_sqrd_dist<min_sqrd_dist:
                    ind = i
                    min_sqrd_dist = this_sqrd_dist
                    best_lmb = lmb
            squared_distances[j] = min_sqrd_dist
            indices[j] = ind
            lmbs[j,:] = best_lmb
    return squared_distances, indices, lmbs